3.109 \(\int (a+a \sec (c+d x)) (e \sin (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=154 \[ \frac{2 a e^2 \sqrt{\sin (c+d x)} \text{EllipticF}\left (\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right ),2\right )}{3 d \sqrt{e \sin (c+d x)}}+\frac{a e^{3/2} \tan ^{-1}\left (\frac{\sqrt{e \sin (c+d x)}}{\sqrt{e}}\right )}{d}+\frac{a e^{3/2} \tanh ^{-1}\left (\frac{\sqrt{e \sin (c+d x)}}{\sqrt{e}}\right )}{d}-\frac{2 a e \sqrt{e \sin (c+d x)}}{d}-\frac{2 a e \cos (c+d x) \sqrt{e \sin (c+d x)}}{3 d} \]

[Out]

(a*e^(3/2)*ArcTan[Sqrt[e*Sin[c + d*x]]/Sqrt[e]])/d + (a*e^(3/2)*ArcTanh[Sqrt[e*Sin[c + d*x]]/Sqrt[e]])/d + (2*
a*e^2*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(3*d*Sqrt[e*Sin[c + d*x]]) - (2*a*e*Sqrt[e*Sin[c +
d*x]])/d - (2*a*e*Cos[c + d*x]*Sqrt[e*Sin[c + d*x]])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.199885, antiderivative size = 154, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 11, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.478, Rules used = {3872, 2838, 2564, 321, 329, 212, 206, 203, 2635, 2642, 2641} \[ \frac{a e^{3/2} \tan ^{-1}\left (\frac{\sqrt{e \sin (c+d x)}}{\sqrt{e}}\right )}{d}+\frac{a e^{3/2} \tanh ^{-1}\left (\frac{\sqrt{e \sin (c+d x)}}{\sqrt{e}}\right )}{d}+\frac{2 a e^2 \sqrt{\sin (c+d x)} F\left (\left .\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )\right |2\right )}{3 d \sqrt{e \sin (c+d x)}}-\frac{2 a e \sqrt{e \sin (c+d x)}}{d}-\frac{2 a e \cos (c+d x) \sqrt{e \sin (c+d x)}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])*(e*Sin[c + d*x])^(3/2),x]

[Out]

(a*e^(3/2)*ArcTan[Sqrt[e*Sin[c + d*x]]/Sqrt[e]])/d + (a*e^(3/2)*ArcTanh[Sqrt[e*Sin[c + d*x]]/Sqrt[e]])/d + (2*
a*e^2*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(3*d*Sqrt[e*Sin[c + d*x]]) - (2*a*e*Sqrt[e*Sin[c +
d*x]])/d - (2*a*e*Cos[c + d*x]*Sqrt[e*Sin[c + d*x]])/(3*d)

Rule 3872

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[((g*C
os[e + f*x])^p*(b + a*Sin[e + f*x])^m)/Sin[e + f*x]^m, x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rule 2838

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)]), x_Symbol] :> Dist[a, Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Dist[b/d, Int[(g*Cos[e + f*x
])^p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]

Rule 2564

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int (a+a \sec (c+d x)) (e \sin (c+d x))^{3/2} \, dx &=-\int (-a-a \cos (c+d x)) \sec (c+d x) (e \sin (c+d x))^{3/2} \, dx\\ &=a \int (e \sin (c+d x))^{3/2} \, dx+a \int \sec (c+d x) (e \sin (c+d x))^{3/2} \, dx\\ &=-\frac{2 a e \cos (c+d x) \sqrt{e \sin (c+d x)}}{3 d}+\frac{a \operatorname{Subst}\left (\int \frac{x^{3/2}}{1-\frac{x^2}{e^2}} \, dx,x,e \sin (c+d x)\right )}{d e}+\frac{1}{3} \left (a e^2\right ) \int \frac{1}{\sqrt{e \sin (c+d x)}} \, dx\\ &=-\frac{2 a e \sqrt{e \sin (c+d x)}}{d}-\frac{2 a e \cos (c+d x) \sqrt{e \sin (c+d x)}}{3 d}+\frac{(a e) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (1-\frac{x^2}{e^2}\right )} \, dx,x,e \sin (c+d x)\right )}{d}+\frac{\left (a e^2 \sqrt{\sin (c+d x)}\right ) \int \frac{1}{\sqrt{\sin (c+d x)}} \, dx}{3 \sqrt{e \sin (c+d x)}}\\ &=\frac{2 a e^2 F\left (\left .\frac{1}{2} \left (c-\frac{\pi }{2}+d x\right )\right |2\right ) \sqrt{\sin (c+d x)}}{3 d \sqrt{e \sin (c+d x)}}-\frac{2 a e \sqrt{e \sin (c+d x)}}{d}-\frac{2 a e \cos (c+d x) \sqrt{e \sin (c+d x)}}{3 d}+\frac{(2 a e) \operatorname{Subst}\left (\int \frac{1}{1-\frac{x^4}{e^2}} \, dx,x,\sqrt{e \sin (c+d x)}\right )}{d}\\ &=\frac{2 a e^2 F\left (\left .\frac{1}{2} \left (c-\frac{\pi }{2}+d x\right )\right |2\right ) \sqrt{\sin (c+d x)}}{3 d \sqrt{e \sin (c+d x)}}-\frac{2 a e \sqrt{e \sin (c+d x)}}{d}-\frac{2 a e \cos (c+d x) \sqrt{e \sin (c+d x)}}{3 d}+\frac{\left (a e^2\right ) \operatorname{Subst}\left (\int \frac{1}{e-x^2} \, dx,x,\sqrt{e \sin (c+d x)}\right )}{d}+\frac{\left (a e^2\right ) \operatorname{Subst}\left (\int \frac{1}{e+x^2} \, dx,x,\sqrt{e \sin (c+d x)}\right )}{d}\\ &=\frac{a e^{3/2} \tan ^{-1}\left (\frac{\sqrt{e \sin (c+d x)}}{\sqrt{e}}\right )}{d}+\frac{a e^{3/2} \tanh ^{-1}\left (\frac{\sqrt{e \sin (c+d x)}}{\sqrt{e}}\right )}{d}+\frac{2 a e^2 F\left (\left .\frac{1}{2} \left (c-\frac{\pi }{2}+d x\right )\right |2\right ) \sqrt{\sin (c+d x)}}{3 d \sqrt{e \sin (c+d x)}}-\frac{2 a e \sqrt{e \sin (c+d x)}}{d}-\frac{2 a e \cos (c+d x) \sqrt{e \sin (c+d x)}}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.574349, size = 170, normalized size = 1.1 \[ \frac{a (e \sin (c+d x))^{3/2} \left (-8 \text{EllipticF}\left (\frac{1}{4} (-2 c-2 d x+\pi ),2\right )-24 \sqrt{\sin (c+d x)}-3 \log \left (1-\sqrt{\sin (c+d x)}\right )+3 \log \left (\sqrt{\sin (c+d x)}+1\right )+12 \tan ^{-1}\left (\sqrt{\sin (c+d x)}\right )+6 \tanh ^{-1}\left (\sqrt{\sin (c+d x)}\right )+16 \sin ^{\frac{5}{2}}(c+d x) \cos (c+d x) \sec (2 (c+d x))-8 \sqrt{\sin (c+d x)} \cos (c+d x) \sec (2 (c+d x))\right )}{12 d \sin ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])*(e*Sin[c + d*x])^(3/2),x]

[Out]

(a*(e*Sin[c + d*x])^(3/2)*(12*ArcTan[Sqrt[Sin[c + d*x]]] + 6*ArcTanh[Sqrt[Sin[c + d*x]]] - 8*EllipticF[(-2*c +
 Pi - 2*d*x)/4, 2] - 3*Log[1 - Sqrt[Sin[c + d*x]]] + 3*Log[1 + Sqrt[Sin[c + d*x]]] - 24*Sqrt[Sin[c + d*x]] - 8
*Cos[c + d*x]*Sec[2*(c + d*x)]*Sqrt[Sin[c + d*x]] + 16*Cos[c + d*x]*Sec[2*(c + d*x)]*Sin[c + d*x]^(5/2)))/(12*
d*Sin[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [A]  time = 1.127, size = 210, normalized size = 1.4 \begin{align*}{\frac{a}{d}{e}^{{\frac{3}{2}}}{\it Artanh} \left ({\sqrt{e\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{e}}}} \right ) }+{\frac{a}{d}{e}^{{\frac{3}{2}}}\arctan \left ({\sqrt{e\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{e}}}} \right ) }-2\,{\frac{ae\sqrt{e\sin \left ( dx+c \right ) }}{d}}-{\frac{a{e}^{2}}{3\,d\cos \left ( dx+c \right ) }\sqrt{-\sin \left ( dx+c \right ) +1}\sqrt{2+2\,\sin \left ( dx+c \right ) }\sqrt{\sin \left ( dx+c \right ) }{\it EllipticF} \left ( \sqrt{-\sin \left ( dx+c \right ) +1},{\frac{\sqrt{2}}{2}} \right ){\frac{1}{\sqrt{e\sin \left ( dx+c \right ) }}}}+{\frac{2\,a{e}^{2} \left ( \sin \left ( dx+c \right ) \right ) ^{3}}{3\,d\cos \left ( dx+c \right ) }{\frac{1}{\sqrt{e\sin \left ( dx+c \right ) }}}}-{\frac{2\,a{e}^{2}\sin \left ( dx+c \right ) }{3\,d\cos \left ( dx+c \right ) }{\frac{1}{\sqrt{e\sin \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))*(e*sin(d*x+c))^(3/2),x)

[Out]

a*e^(3/2)*arctanh((e*sin(d*x+c))^(1/2)/e^(1/2))/d+a*e^(3/2)*arctan((e*sin(d*x+c))^(1/2)/e^(1/2))/d-2*a*e*(e*si
n(d*x+c))^(1/2)/d-1/3/d*a*e^2/cos(d*x+c)/(e*sin(d*x+c))^(1/2)*(-sin(d*x+c)+1)^(1/2)*(2+2*sin(d*x+c))^(1/2)*sin
(d*x+c)^(1/2)*EllipticF((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))+2/3/d*a*e^2/cos(d*x+c)/(e*sin(d*x+c))^(1/2)*sin(d*x
+c)^3-2/3/d*a*e^2/cos(d*x+c)/(e*sin(d*x+c))^(1/2)*sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )} \left (e \sin \left (d x + c\right )\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*(e*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)*(e*sin(d*x + c))^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a e \sec \left (d x + c\right ) + a e\right )} \sqrt{e \sin \left (d x + c\right )} \sin \left (d x + c\right ), x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*(e*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral((a*e*sec(d*x + c) + a*e)*sqrt(e*sin(d*x + c))*sin(d*x + c), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*(e*sin(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )} \left (e \sin \left (d x + c\right )\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*(e*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)*(e*sin(d*x + c))^(3/2), x)